$解:(1)∵ 拋物線y=a(x+1)2-3與y軸交于點(diǎn)C(0,-\frac{8}{3}),$
$∴-\frac{8}{3}=a-3,解得a=\frac{1}{3}$
$∴拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為y=\frac{1}{3}(x+1)2-3.$
$令y=0,則\frac{1}{3}(x+1)2-3=0,解得x_{1}=2,x_{2}=-4.$
$∵點(diǎn)A在點(diǎn)B的左側(cè),$
$∴點(diǎn)A的坐標(biāo)為(-4,0),點(diǎn)B的坐標(biāo)為(2,0)$
$(2)根據(jù)題意,得D(-1,-3)、H(-1,0).\ $
$∵ A(-4,0)、B(2,0)、C(0,-\frac{8}{3}),$
$∴OA=4,OB=2,OC=\frac{8}{3},OH=1,DH=3.$
$∴AH=OA-OH=3.\ $
$∴S_{四邊形ABCD}=S_{△ADH}+S_{梯形OCDH}+S_{△BOC}=\frac{1}{2}×3×3+\frac{1}{2}×(\frac{8}{3}+3)×1+\frac{1}{2}×2×\frac{8}{3}=10$