$解:(1)AD=CD+AB.$
$理由:如圖2,延長(zhǎng)AM、DC相交于點(diǎn)F,$
$∵M(jìn)是BC的中點(diǎn),$
$∴CM=BM.$
$∵AB∥CD,$
$∴∠BCF=∠B,∠AMB=∠CMF.$
$在△ABM和△MCF中,$
$\left\{\begin{array}{l}{∠B=∠MCF}\\{BM=MC}\\{∠AMB=∠CMF}\end{array}\right.,$
$∴△ABM≌△MCF(ASA),$
$∴AB=CF,AM=MF.$
$∵AM平分∠BAD,$
$∴∠BAM=∠CAF,$
$∵AB∥CD,$
$∴∠F=∠BAM,$
$∴∠F=∠CAF,$
$∴AD=DF.$
$∵DF=DC+CF,$
$∴DF=AB+CD,$
$∴AD=AB+CD.$