$證明:在\triangle ABE與\triangle CDF中,$
$\left \{ {{\begin{array}{ll} {AB=CD} \\\ {BE=DF} \\\ {AE=CF} \end{array}}} \right . $
$\triangle ABE\cong \triangle CDF\left ( {SSS} \right ), $
$\therefore \angle AEB=\angle CFD, $
$\because \angle ABE+\angle AEO=18{0}^{\circ },$
$\angle CFD+\angle CFO=18{0}^{\circ }, $
$\therefore \angle AEO=\angle CFO, $
$在\triangle AEO與\triangle CFO中, $
$\left \{ {{\begin{array}{ll} {\angle AOE=\angle COF} \\\ {\angle AEO=\angle CFO} \\\ {AE=CF} \end{array}}} \right . $
$\therefore \triangle AEO\cong \triangle CFO\left ( {AAS} \right ),$
$\therefore AO=CO$