$解:設(shè)等腰三角形的腰長(zhǎng)為x\ \mathrm {cm},底邊長(zhǎng)為y\ \mathrm {cm}.$
$由題意可知,分兩種情況: $
$①腰與底的差是3\ \mathrm {cm}時(shí), $
$則\left\{ \begin{array}{l}{2x+y=12} \\ {x-y=3} \end{array} \right. $
$解得\left\{ \begin{array}{l}{x=5.} \\ {y=2.} \end{array} \right. $
$即腰為5\ \mathrm {cm},底為2\ \mathrm {cm}. $
$∵5,5,2能夠組成三角形, $
$∴符合題意. $
$②底與腰的差是3\ \mathrm {cm}時(shí), $
$則\left\{ \begin{array}{l}{2x+y=12} \\ {y-x=3} \end{array} \right. $
$解得\left\{ \begin{array}{l}{x=3.} \\ {y=6.} \end{array} \right. $
$即底為6\ \mathrm {cm},腰為3\ \mathrm {cm}. $
$∵3,3,6不能夠組成三角形, $
$∴不符合題意. $
$故三邊的長(zhǎng)為5\ \mathrm {cm},5\ \mathrm {cm},2\ \mathrm {cm}. $