解:?$(1)C_{1}P=-\frac 23-(-2)=\frac 43$?,?$C_{1}Q=4-(-\frac 23)=\frac {14}{3} $?,?$2C_{1}P≠C_{1}Q$?,?$C_{1}P≠2C_{1}Q$?,
所以?$C_{1}$?不是點(diǎn)?$P$?,?$Q $?的?$“$?關(guān)聯(lián)點(diǎn)?$”;$?
?$C_{2}P=0-(-2)=2$?,?$C_{2}Q=4-0=4$?,?$2C_{2}P=C_{2}Q$?,
所以?$C_{2}$?是點(diǎn)?$P$?,?$Q $?的?$“$?關(guān)聯(lián)點(diǎn)?$”;$?
?$C_{3}P=2-(-2)=4$?,?$C_{3}Q=4-2=2$?,?$C_{3}P=2C_{3}Q$?,
所以?$C_{3}$?是點(diǎn)?$P$?,?$Q $?的?$“$?關(guān)聯(lián)點(diǎn)?$”;$?
?$C_{4}P=6-(-2)=8$?,?$C_{4}Q=6-4=2$?,?$2C_{4}P≠C_{4}Q$?,?$C_{4}P≠2C_{4}Q$?,
所以?$C_{4}$?不是點(diǎn)?$P$?,?$Q $?的?$“$?關(guān)聯(lián)點(diǎn)?$”;$?
綜上所述,?$C_{2}$?,?$C_{3}$?是點(diǎn)?$P$?,?$Q $?的?$“$?關(guān)聯(lián)點(diǎn)?$”.$?