亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第128頁

第128頁

信息發(fā)布者:

?$解:(1)∵∠AOC+∠BOC=180°,$?
?$∴∠BOC=180°-∠AOC=180°-40°=140°,$?
?$∵OE平分∠BOC,$?
?$∴∠COE=\frac{1}{2}∠BOC=\frac{1}{2}×140°=70°,$?
?$∵∠COD是直角,$?
?$∴∠COE+∠DOE=90°,$?
?$∴∠DOE=90°-∠COE=90°-70°=20°.$?(更多請點擊查看作業(yè)精靈詳解)
45
解: (1)若點C在線段AB上,如圖1

∵AC=2cm ,點M為AC的中點
∴AM=CM=1cm
∵AB=10cm ,點N為BC的中點, AC=2cm
∴NC= ?$\frac12$?BC=4cm
∴MN=CM+CN=1+4=5(cm) 
若點C在線段BA的延長線上,如圖2

∵AC=2cm,點M為AC的中點
∴AM=CM=1cm
∵AB=10cm ,點N為BC的中點, AC=2cm 
∴NC= ?$\frac12$?BC=6cm 
∴MN=CN-CM=6-1=5(cm) 
綜上所述,MN的長度是5cm
( 2 )②∵OD平分∠AOC , OE平分∠BOC
∴∠DOC= ?$\frac12$?∠AOC ,∠COE= ?$\frac12$?∠BOC
∴∠DOE=∠DOC+∠COE= ?$\frac12$?∠AOC+ ?$\frac12$?∠BOC= ?$\frac12$?∠AOB= ?$\frac12$?x°
③∵OD平分∠AOC , OE平分∠BOC
∵∠DOC= ?$\frac12$?∠AOC, ∠COE= ?$\frac12$?∠BOC
∴∠DOE=∠DOC-∠COE= ?$\frac12$?∠AOC- ?$\frac12$?BOC= ?$\frac12$?∠AOB= ?$\frac12$?x°
(3)理解: MN的長度是AB的一半,∠DOE的度數(shù)是∠AOB的一半

$解:(2)∠DOE與∠AOC之間的數(shù)量關系:$
$∠DOE=\frac{1}{2}∠AOC.$
$∵∠COD是直角,$
$∴∠COD=90°,∠DOE=∠COD-∠COE=90°-∠COE,$
$∵OE平分∠BOC,∠BOC=180°-∠AOC,$
$∴∠COE=\frac{1}{2}∠BOC$
$=\frac{1}{2}(180°-∠AOC)$
$=90°-\frac{1}{2}∠AOC,$
$∴∠DOE=90°-∠COE$
$=90°-(90°-\frac{1}{2}∠AOC)$
$=\frac{1}{2}∠AOC,$
$∴∠DOE與∠AOC之間的數(shù)量關系,$
$∠DOE=\frac{1}{2}∠AOC.$
$解:(3)∠DOE=\frac{1}{2}a$