$解:(1)∠BCE與∠BAC相等或互補,理由如下:$
$當(dāng)D在線段BC上時,如圖1(a)$
$由題,AD=AE$
$∵∠DAE=∠BAC,∴∠BAD=∠CAE$
$在△ABD和△ACE中$
${{\begin{cases} {{AB=AC}} \\ {∠BAD=∠CAE} \\ {AD=AE} \end{cases}}}$
$∴△ABD≌△ACE(SAS)$
$∴∠ABC=∠ACE$
$∴∠BCE=∠BCA+∠ACE=∠BCA+∠ABC$
$而∠BAC+∠BCA+∠ABC=180°$
$∴∠BCE+∠ABC=180°$
$當(dāng)D在BC延長線上時,如圖1(b)$
$同理可證△ABD≌△ACE,∴∠ABD=∠ACE$
$∴∠BCE+∠ABC=180°$
$當(dāng)D在CB延長線上時,如圖1(c)$
$同理可證△ABD≌△ACE,∴∠ABD=∠ACE$
$∵∠ABD=∠BAC+∠ACB,∠ACE=∠ACB+∠BCE$
$∴∠BCE=∠BAC$
$(2)(更多請點擊查看作業(yè)精靈詳解)$