解:?$(1)$?如圖,過點(diǎn)?$A$?作?$AM⊥BC$?于點(diǎn)?$M$?
∵?$△ABC$?的面積為?$84$?,?$BC=21$?
∴?$\frac {1}{2}×21×AM=84$?
∴?$AM=8$?
∴?$△ABC$?的?$BC$?邊上的高是?$8$?
?$(2)①$?在?$Rt△AMB$?中,?$BM=\sqrt {AB^2-AM^2}=6$?
∴?$CM=BC-BM=15$?
∴在?$Rt△AMC$?中,?$AC=\sqrt {CM^2+AM^2}=17$?
∴?$DF=AC=17$?
?$②$?當(dāng)?$AB=BE=10$?時,?$a=BE=10$?
當(dāng)?$AB=AE=10$?時,?$BE=2BM=12$?,則?$a=BE=12$?
當(dāng)?$EA=EB=a$?時,?$ME=a-6$?
在?$Rt△AME$?中,?$AM^2+ME^2=AE^2$?
即?$8^2+(a-6)^2=a^2$?
解得?$a=\frac {25}{3}$?
則當(dāng)?$△ABE$?是等腰三角形時,?$a$?的值為?$10$?或?$12$?或?$\frac {25}{3}$?