$解:(2)分兩種情況$
$①當(dāng)AC經(jīng)過(guò)圓心,B_2C是⊙O的切線時(shí)$
$此時(shí)B_2C⊥B_2O$
$∵B_2(\frac {\sqrt{2}}{2},-\frac {\sqrt{2}}{2})$
$∴y_{B_2O}=-x$
$∴直線B_2C的斜率為1$
$設(shè)直線B_2C的解析式為y=x+b$
$把(\frac {\sqrt{2}}{2},-\frac {\sqrt{2}}{2})代入:$
$\frac {\sqrt{2}}{2}+b=-\frac {\sqrt{2}}{2}$
$b=-\sqrt{2},∴y_{B_2C}=x-\sqrt{2}$
$當(dāng)y=0時(shí),x-\sqrt{2}=0,x=\sqrt{2}$
$∴C(\sqrt{2},0)$
$②當(dāng)B_2C經(jīng)過(guò)圓心,AC是⊙O的切線時(shí)$
$∵A(-1,0)∴C的橫坐標(biāo)為-1$
$由①知,直線B_2O的解析式為y=-x$
$當(dāng)x=-1時(shí),y=1$
$∴C(-1,1)$
$綜上所述:C(\sqrt{2},0)或(-1,1)$