$證明:(1)當(dāng)點(diǎn)O在∠ACB的邊上,如圖1,$
$∵OA=OC,$
$∴∠ACB=∠OAC,$
$∴∠AOB=∠ACB+∠OAC=2∠ACB,$
$∴∠ACB=\frac {1}{2}∠AOB.$
$(2)連接OA,OB,OP$
$因?yàn)椤螩=60°$
$所以∠AOB=2∠C=120°$
$因?yàn)镻A,PB分別與圓O相切于點(diǎn)A,B$
$所以∠OAP=∠OBP=\frac {1}{2}∠APB=\frac {1}{2}×(180°-120°)=30°$
$因?yàn)镺A=2$
$所以O(shè)P=2OA=4$
$所以PA=\sqrt{42-22}=2\sqrt{3}.$