$解:\left( 2 \right) 分兩種情況∶$
$①點P在∠AOB內(nèi),連接PE,PC,CP的延$
$長線 與直線OF交于點N, $
$過點P\text{作}PM⊥EF,垂足為點M,$
$如圖1\ $
$∵EF=4\sqrt{2}\,\,\text{cm},PM⊥EF\ $
$∴EM=\frac{1}{2}EF=2\sqrt{2}\,\,\text{cm}\ $
$在Rt△EPM中,$
$∵PE=3\,\,\text{cm},EM=2\sqrt{2}\,\,\text{cm}\ $
$∴PM=\sqrt{PE^2-EM^2}=1\,\,\text{cm}\ $
$∵∠AOB=60°,∠OCP=90°\ $
$∴∠ONC=30°\ $
$在Rt△MNP中,$
$∵∠ONC=30°,PM=1\,\,\text{cm}\ $
$∴PN=2PM=2\,\,\text{cm}\ $
$∵\odot O的半徑為3\,\,\text{cm}\ $
$∴CN=CP+PN=3\,\,\text{cm}+2\,\,\text{cm}=5\,\,\text{cm}$
$\ 在Rt△OCN中,$
$∵∠ONC=30°,\ CN=5\,\,\text{cm}\ $
$∴OC=\frac{CN}{\sqrt{3}}=\frac{5\sqrt{3}}{3}\,\,\text{cm}\ $
$②點P在∠AOB外,$
$連接PF,PC\text{,}PC與EF交于點N,\ $
$過點P作PM⊥EF,垂足為點M,如圖2$

$\ $
$由①可知,$
$PM=1\,\,\text{cm},∠PNM=30°,$
$PN=2\,\,\text{cm}\ $
$∵PC=3\,\,\text{cm}\ $
$∴CN=PC-PN=1\,\,\text{cm}\ $
$在Rt△OCN中,$
$∵∠ONC=30°,CN=1\,\,\text{cm}\ $
$∴OC=\frac{CN}{\sqrt{3}}=\frac{\sqrt{3}}{3}\,\,\text{cm}$
$\ 綜上所述,OC的長為\frac{5\sqrt{3}}{3}\,\,\text{cm}或\frac{\sqrt{3}}{3}\ \text{cm}. $