$\therefore \angle FBD=\frac {1} {2}\angle GOD={30}^{\circ }$
$\because AC//BF$
$\therefore \angle C=\angle FBD={30}^{\circ } $
$由 ( {1} )結(jié)論\angle ABC=\angle C得$
$\angle ABC={30}^{\circ }$
$\because \angle BAE=\angle C+\angle ABC$
$\therefore \angle BAE={60}^{\circ }$
$\because OA=OE$
$\therefore \triangle OAE是等邊三角形$
$\therefore \angle EOA={60}^{\circ }$
$\therefore \angle ABE=\frac {1} {2}\angle EOA={30}^{\circ }$
$\therefore \angle ABE=\angle ABC$
$\therefore \widehat{AD}=\widehat{AE}$
$\therefore 點(diǎn)D與點(diǎn)E關(guān)于直線AB對(duì)稱(chēng)$