$解:連接OE、AE$
$∵CE⊥OA$
$∴∠ECO=90°$
$∵點(diǎn)C為OA的中點(diǎn)$
$∴OC=\frac12OA=\frac12OE$
$∵在Rt△ECO中,OC=\frac12OE$
$∴∠COE=60°$
$∴S_{陰影}=S_{扇形ABO}-S_{扇形CDO}-(S_{扇形AOE}-S_{△COE})$
$=\frac {90π×2^2}{360}-\frac {90π×1^2}{360}-(\frac {60π×2^2}{360}-\frac {1}{2}×1×\sqrt{3})$
$=\frac {3}{4}π-\frac {2}{3}π+\frac {\sqrt{3}}{2}$
$=\frac {π}{12}+\frac {\sqrt{3}}{2} $