$ 解:∵x^{2}-4x+y=0 ①,y^{2}-4y+x=0 ②$
$ ①-②,得:x^{2}-4x+y-y^{2}+4y-x=0,即x^{2}-y^{2}-5(x-y)=0$
$ ∴(x+y)(x-y)-5(x-y)=0,∴(x-y)(x+y-5)=0$
$ ∵x≠y,∴x-y≠0,∴x+y-5=0,即x+y=5$
$∵x^{2}-4x+y=0,y^{2}-4y+x=0,∴x^{2}=4x-y,y^{2}=4y-x$
$∴原式=x(4x-y)+2xy+y(4y-x)=x×x^{2}+2xy+y×y^{2}$
$=4(x^{2}+y^{2})=4(3x+3y)=12(x+y)=60$