$證明:∵AC⊥CF,DF⊥CF,∴∠ACB=∠DFE=90°\ $
$∵EC=BF,∴EC+EB=BF+EB,即CB=FE$
$\ 在Rt△ACB與Rt△DFE中$
$\begin{cases}{ AB=DE }\ \\ { CB=FE } \end{cases}$
$∴Rt△ACB≌Rt△DFE(HL),∴AC=DF$
$在△ACE與△DFB中$
$\begin{cases}{ AC=DF }\ \\ { ∠ACE=∠DFB } \\{ CE=FB} \end{cases}$
$∴△ACE≌△DFB(SAS),∴AE=DB $