$解:(1)中的結論仍然成立,證明如下:\ $
$∵AB//ED,AC//FD,∴∠B=∠E,∠ACF=∠DFC\ $
$∴180°-∠ACF=180°-∠DFC,即∠ACB=∠DFE\ $
$∵BF=EC,∴BF-CF=EC-CF,即BC=EF\ $
$在△ACB和△DFE中$
${{\begin{cases} {{∠ABC=∠DEF}} \\ {BC=EF} \\ {∠ACB=∠DFE} \end{cases}}}$
$∴△ACB≌△DFE(ASA),∴AC=DF\ $
$在△OAC和△ODF中$
${{\begin{cases} {{∠OAC=∠ODF}} \\ {AC=DF} \\ {∠OCA=∠OFD} \end{cases}}}$
$∴△OAC≌△ODF(ASA)$
$∴OC=OF,即AD平分CF$