解:?$(1)AD$?與?$⊙O$?相切,理由:連接?$OA$?
∵?$AD//BC$?,∴?$∠D=∠DBC$?
∵?$AD=AB$?,∴?$∠D=∠ABD$?
∴?$∠DBC=∠ABD=\frac {1}{2}∠ABC=30°$?
∴?$∠BAD=180°-∠D-∠ABD=120°$?
∵?$OA=OB$?
∴?$∠BAO=∠ABD=30°$?
∴?$∠OAD=90°$?
∴?$OA⊥AD$?
∵?$OA$?是圓的半徑
∴?$AD$?與?$⊙O$?相切
?$(2)$?連接?$OC$?,過?$O$?作?$OH⊥BC$?于?$H$?
∵?$OB= OC$?
∴?$∠OCB=∠OBC=30°$?
∴?$∠BOC=120°$?
∵?$Rt△OBH$?中,?$OB=6$?,?$∠OBH=30°$?
∴?$OH=\frac {1}{2}OB= 3$?
∴?$BH= \sqrt {62-32}=3\sqrt {3}$?
∴?$BC=2BH=6\sqrt 3$?
∵?$S_{扇形OBC} =\frac {120 · π×6^2}{360}=12π$?,
?$S_{△OBC}=\frac {1}{2}BC · OH=\frac {1}{2}×6\sqrt 3×3 =9\sqrt 3$?
∴?$S_{陰影}=12π-9\sqrt 3$?