$(2)證明:連接OA、OB,$
$\because OA=OB,$
$\therefore \angle OAB=\angle OBA,$
$\because \angle FAB=\angle CBA,$
$\therefore \angle OAG=\angle OBH,$
$在\triangle AOG 和\triangle BOH中,$
$\{\begin{array}{l}AG=BH\\\angle OAG=\angle OBH\\OA=OB\end{array},$
$\therefore \triangle AOG≌\triangle BOH(\mathrm {SAS})$
$\therefore OG=OH. $