$解:(1)過點O作OM\bot FG于點M,$
$延長MO交BC于點N,連接OG,$
$\because 四邊形ABCD是矩形,$
$\therefore \angle C=\angle D=90^{\circ},$
$\therefore BE是\odot O的直徑.$
$\because \angle C=\angle D=\angle DMN=90^{\circ},$
$\therefore 四邊形MNCD是矩形,$
$\therefore MN\bot BC,MN=CD=AB=4,$
$\therefore BN=CN.$
$\because OB=OE,$
$\therefore ON是\triangle BCE的中位線$
$\therefore ON=\frac {1}{2}CE=1,$
$\therefore OM=4-1=3,$
$在Rt\triangle BCE中,$
$BE=\sqrt{B{C}^2+C{E}^2}=2\sqrt{10}, $
$\therefore OG=\frac {1}{2}BE=\sqrt{10},$
$在Rt\triangle OMG 中,$
$MG=\sqrt{O{G}^2-O{M}^2}=1,$
$\therefore FG=2MG=2.$