$解:(2) 連接 B D .$
$\because A B 是直徑,$
$\therefore \angle A D B=\angle B D P=90^{\circ},$
$\because A B=A P=10, D P=2, $
$\therefore A D=10-2=8\ $
$\therefore B D=\sqrt{A B^2-A D^2}=\sqrt{10^2-8^2}=6 .$
$\therefore P B=\sqrt{B D^2+P D^2}$
$=\sqrt{6^2+2^2}$
$=2 \sqrt{10},$
$\because A B=A P, A C \perp B P,$
$\therefore B C=P C=\frac {1}{2}\ \mathrm {P} B=\sqrt{10},$
$即線段 P C 的長(zhǎng)為 \sqrt{10} $