$解:過(guò)點(diǎn)A 作AD⊥BC,垂足為D$
$∵AB=AC=5,AD⊥BC,BC=6$
$∴BD=\frac 1 2BC=3,$
$AD垂直平分BC$
$∴點(diǎn)O在直線AD上$
$∴在Rt△ABD中,$
$AD=\sqrt {{AB}^{2}-{BD}^{2}}=4$
$當(dāng)點(diǎn){O}_{1}在AD的反向延長(zhǎng)線上時(shí),$
$連接{O}_{1}$
$B{O}_{1}D=AD+A{O}_{1}=4+3=7$
$在Rt△{O}_{1}BD中,$
${O}_{1}B=\sqrt {{{O}_{1}D}^{2}+{BD}^{2}}$
$=\sqrt {58}$
$當(dāng)點(diǎn){O}_{2}在線段AD上時(shí),$
$連接{O}_{2}B$
${O}_{2}D=AD-A{O}_{2}=4-3=1$
$在Rt△{O}_{2}BD中,$
${O}_{2}B=\sqrt {{{O}_{2}D}^{2}+{BD}^{2}}$
$=\sqrt {10}$
$綜上所述,⊙O的半徑為\sqrt {58}或\sqrt {10} $