$解:連接 O D$
$∵ C D \perp A B,$
$\therefore C E=D E=\frac {1}{2}\ \mathrm {C} D=3.$
$設(shè) \odot O 的半徑為 r,$
$\ 則 O E=r-1, O D=r$
$在Rt△ODE中,由勾股定理得$
$(r-1)^2+3^2=r^2,$
$解得 r=5,$
$\therefore O E=4, A E=5+4=9 .$
$\therefore S_{\triangle A E D}=\frac {1}{2}\ \mathrm {A} E \cdot D E$
$=\frac {1}{2} \times 9 \times 3$
$=\frac {27}{2},$
$S_{\triangle O E D}=\frac {1}{2}\ \mathrm {O} E \cdot D E$
$=\frac {1}{2} \times 4 \times 3$
$=6 .$
$\therefore S_{\triangle A O D}=S_{\triangle A E D}-S_{\triangle O E D}$
$=\frac {27}{2}-6$
$=\frac {15}{2} .$
$\because O F \perp A D, O A=O D,$
$\therefore A F=D F .$
$\therefore S_{\triangle A O F}=\frac {1}{2}\ \mathrm {S}_{\triangle A O D}$
$=\frac {1}{2} \times \frac {15}{2}$
$=\frac {15}{4}$