$證明:連接 A C, B D\ $
$\because C 、 D 是 \widehat{A B} 的兩個(gè)三等分點(diǎn),$
$\therefore A C=C D=B D, \angle A O C=\angle C O D .$
$\because O A=O C=O D, $
$\therefore \triangle A C O \cong \triangle D C O(\mathrm {SAS}),$
$\therefore \angle A C O=\angle O C D.$
$易證得 \angle O E F=\angle O A E+\angle A O E=45^{\circ}+30^{\circ}=75^{\circ},$
$\angle O C D=\frac {180^{\circ}-30^{\circ}}{2}=75^{\circ},$
$\therefore \angle O E F=\angle O C D .\therefore C D / / A B .$
$\therefore \angle A E C=\angle O C D .$
$\therefore \angle A C O=\angle A E C.\therefore A C=A E.$
$同理可得, B F=B D.$
$又 \because A C=C D=B D,$
$\therefore A E=B F=C D$