$解:(1) \because 點(diǎn) E 是 \triangle A B C 的內(nèi)心, $
$\therefore \angle B A E=\angle E A C, \angle E B A=\angle E B C .$
$ \because \angle D E B=\angle B A E+\angle E B A, $
$\angle D B E=\angle E B C+\angle D B C, $
$\angle D B C=\angle E A C, $
$\therefore \angle D B E=\angle D E B .$
$ \therefore D B=D E $
$(2) 連接 C D 、 O D .$
$ \because \angle B A D=\angle D A C,$
$ \therefore \widehat{B D}=\widehat{C D} .$
$ \therefore B D=C D .$
$ \because B C 是直徑, $
$\therefore \angle B D C=90^{\circ} .$
$ \therefore \angle D B C=\angle D C B=45^{\circ} $
$\therefore F C 是切線, $
$\therefore \angle B C F=90^{\circ} . $
$\therefore \angle D C F=45^{\circ} $
$\therefore \triangle C D F 是等腰直角三角形 $
$\because D E=D B=3 \sqrt{2}, $
$\therefore 易求得 O D=O C=3, D F=C D=B D=3 \sqrt{2}. $
$\therefore S_{涂色 }=S_{\triangle C D F}-(S_{扇形 O C D}-S_{\triangle O C D})=\frac {1}{2} \times 3 \sqrt{2} \times 3 \sqrt{2}-(\frac {90 \cdot \pi \cdot 3^2}{360}-\frac {1}{2} \times 3 \times 3)=\frac {27}{2}-\frac {9 \pi}{4}$