解: $x2-6x+9=16$ $(x-3)2=16$ $x-3=±4$ ${x}_{1}=7,{x}_{2}=-1$
解: $x2+10x+25=16$ $(x+5)2=16$ $x+5=±4$ ${x}_{1}=-1,{x}_{2}=-9$
解: $x2+2x+1=8$ $(x+1)2=8$ $x+1=±2\sqrt{2}$ ${x}_{1}=-1+2\sqrt{2},{x}_{2}=-1-2\sqrt{2}$
解: $x2-6x+9=10$ $(x-3)2=10$ $x-3=±\sqrt{10}$ ${x}_{1}=3+\sqrt{10},{x}_{2}=3-\sqrt{10}$
解: $t2-t+\frac{1}{4}=\frac{9}{4}$ $(t-\frac{1}{2})2=\frac{9}{4}$ $t-\frac{1}{2}=±\frac{3}{2}$ ${t}_{1}=2,{t}_{2}=-1$
解: $x2+3x+\frac{9}{4}=\frac{21}{4}$ $(x+\frac{3}{2})2=\frac{21}{4}$ $x+\frac{3}{2}=±\frac{\sqrt{21}}{2}$ ${x}_{1}=\frac{-3+\sqrt{21}}{2},{x}_{2}=\frac{-3-\sqrt{21}}{2}$
解:因為 $a=2,b=-5,c=0$ $所以 b2-4ac$ $=(-5)2-4×2×0=25>0$ x= $\frac{-b±\sqrt{b2-4ac} }{2a}$ = $\frac{-(-5)±\sqrt{25}}{2×2}$ = $\frac{5±5}{4}$ ${x}_{1}=\frac{5}{2},{x}_{2}=0$
解:因為 $a=2,b=3,c=1$ 所以 $b2-4ac$ = $32-4×2×1=1$ x= $\frac{-b±\sqrt{b2-4ac} }{2a}$ = $\frac{-3±1}{2×2}$ ${x}_{1}=-\frac{1}{2},{x}_{2}=-1$
解: $a=3,b=-1,c=-2$ $b2-4ac$ $=(-1)2-4×3×(-2)=25$ x= $\frac{-b±\sqrt{b2-4ac} }{2a}$ = $\frac{1±\sqrt{25}}{2×3}$ ${x}_{1}=1,{x}_{2}=-\frac{2}{3}$
解:因為 $a=4,b=-2,c=-1$ $所以 b2-4ac$ $=(-2)2-4×4×(-1)=20$ x= $\frac{-b±\sqrt{b2-4ac} }{2a}$ = $\frac{2±\sqrt{20}}{2×4}$ = $\frac{1±\sqrt{5}}{4}$ ${x}_{1}=\frac{1+\sqrt{5}}{4},{x}_{2}=\frac{1-\sqrt{5}}{4}$
|
|