$解:(2)∵∠AOB=α,∠NOB=\frac {1}{4}∠COB,∠COM=\frac {3}{4}∠COA$
$∴∠MON=∠MOC+∠NOC=\frac {3}{4}(∠BOC+∠AOC)=\frac {3}{4}∠AOB=\frac {3}{4}α$
$∴∠AOM+∠BON=α-\frac {3}{4}α=\frac {1}{4}α$
$(3)與β的大小無關(guān),理由:$
$∵∠AOB=α,∠BOC=β$
$∴∠AOC=α+β$
$∵OM是∠AOC的平分線,ON是∠BOC的平分線$
$∴∠MOC=\frac {1}{2}∠AOC=\frac {1}{2}(α+β),∠NOC=\frac {1}{2}∠BOC=\frac {1}{2}β$
$∴∠MON=∠MOC-∠NOC=\frac {1}{2}(α+β)-\frac {1}{2}β=\frac {1}{2}α$
$即∠MON=\frac {1}{2}α$