$(1)證明:∵△ABC和△DCE都是等$
$腰直角三角形,∠ACB=∠ECD=90°$
$∴CE=CD,CA=CB,$
$∠ECA+∠ACD=∠ACD+DCB=90°$
$∴∠ECA=∠DCB$
$在△AEC和△BDC$
${\begin{cases} {{CE=CD}}\\ {∠ECA=∠DCB}\\ {CA=CB} \end{cases}}$
$∴△AEC≌△BDC(SAS)$
$(2)解:∵△AEC≌△BDC$
$∴AE=BD=12$
$∠EAC=∠B=45°$
$∴∠EAD=∠EAC+∠BAC=90°$
$DE=\sqrt{AE^2+AD^2}$
$=13$