$ 解:由題有\(zhòng)begin{cases}{ 3a+b=-2 }\ \\ { 3c+5=-2 } \\{\frac {3}{4}a+b=\frac {1}{4} } \end{cases}解得\begin{cases}{ a=-1 }\ \\ { b=1 } \\{ c=-\frac {7}{3}} \end{cases}$ $∴l(xiāng)_{1}:y=-x+1,l_{2}:y=-\frac {7}{3}x+5$
$ 解:(1)由題,k≠3k-1,解得k≠\frac {1}{2} ∴k≠\frac {1}{2},b為任意實(shí)數(shù)時(shí),方程組有唯一一組解$ $(2)由題,k=3k-1且b=2時(shí),即k=\frac {1}{2},b=2時(shí),方程組有無(wú)數(shù)組解$ $(3)由題,k=3k-1且b≠2時(shí),即k=\frac {1}{2},b≠2時(shí),方程組無(wú)解$
$解:如圖,則$ $解為\begin{cases}{ x=1 }\ \\ { y=-2 } \end{cases}$
$解:如圖,則$ $解為 \begin{cases}{ x=1 }\ \\ { y=-1 } \end{cases}$
(更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)
$(3)解:過(guò)C作關(guān)于x軸的對(duì)稱(chēng)點(diǎn)C'(2,-2).連接BC'交x軸于E,E點(diǎn)即為所求$ $同樣地,通過(guò)B,C'兩點(diǎn)坐標(biāo)可求得BC'解析式為$ $y=-\frac {7}{3}x+\frac {8}{3}$ $把y=0代入函數(shù)有 -\frac {7}{3}x+\frac {8}{3}=0,解得x=\frac {8}{7}$ $∴E(\frac {8}{7},0),此時(shí)△BCE周長(zhǎng)最短.$
$解:設(shè)l_{2}:y=kx+b$ $把A,B坐標(biāo)分別代入l_{2}解析式有$ $\begin{cases}{ 4k+b=0 }\ \\ { -k+b=5 } \end{cases}$ $解得\begin{cases}{ k=-1 }\ \\ { b=4 } \end{cases}$ $∴l(xiāng)_{2}:y=-x+4$
$解:易知,A(4,0),B(-1,5)$ $把y=0代入l_{1}解析式有$ $\frac {1}{2}x+1=0,解得x=-2$ $∴D(-2,0)$ $聯(lián)立l_{1},l_{2}解析式有$ $\begin{cases}{ -x+4=y }\ \\ {\ \frac {1}{2}x+1=y} \end{cases}解得\begin{cases}{ x=2 }\ \\ { y=2 } \end{cases}$ $∴C(2,2)$ $∴S_{△ADC}=\frac {1}{2}×2×(4+2)=6$
|
|