$解:(2)?∵?A C=4\ \mathrm {cm},?動(dòng)點(diǎn)? P ?從點(diǎn)? C ?開(kāi)始按$
$? C→A →B→C ?的路徑運(yùn)動(dòng),$
$且速度為每秒? 1\ \mathrm {cm}?$
$∴當(dāng)? P ?在? A C ?上運(yùn)動(dòng)時(shí),?\triangle B C P ?為直角三角形$
$如圖,當(dāng)? P ?在? A B ?上時(shí),?C P \perp A B ?時(shí)$
$?\triangle B C P ?為直角三角形$
$∵?\frac {1}{2}AB ·C P=\frac {1}{2}AC ·B C?$
$∴?\frac {1}{2} ×5CP=\frac {1}{2} ×3 ×4?$
$∴?C P= \frac {12}{5}\mathrm {cm}?$
$由勾股定理得? A C^2=A P^2+P C^2?$
$即? 4^2=A P^2+(\frac {12}{5})^2?$
$解得? A P=\frac {16}{5}\mathrm {cm}?$
$∴?A C+A P=4+\frac {16}{5}=\frac {36}{5}(\mathrm {cm})?$
$∴?t=\frac {36}{5} \div 1=\frac {36}{5}(\mathrm {s}) ?$
$綜上所述,當(dāng)? 0?<t≤4或t=\frac {36}{5}時(shí),$
$? \triangle B C P ?為直角三角形$