$解:(3)連接P_{1}A、P_{1}D、P_{1}B、P_{2}C、P_{2}D和P_{2}B$
$根據(jù)題意得 ∠AP_{1}D=∠AP_{1}B,∠DP_{1}C=∠BP_{1}C$
$∴∠AP_{1}B+∠BP_{1}C=180°$
$∴P_{1} 在AC上,同理,P_{2}也在AC上$
$在△DP_{1}P_{2} 和△BP_{1}P_{2} 中$
$\begin{cases}∠DP_{2}P_{1}=∠BP_{2}P_{1}\\P_{1}P_{2}=P_{1}P_{2}\\∠DP_{1}P_{2}=∠BP_{1}P_{2}\end{cases}$
$∴△DP_{1}P_{2}≌△BP_{1}P_{2}(\mathrm {ASA})$
$∴DP_{1}=BP_{1},DP_{2}=BP_{2}$
$于是點(diǎn)B、D關(guān)于AC對稱$
$設(shè)P是P_{1}P_{2}上任一點(diǎn),連接PD、PB$
$由對稱性,得∠DPA=∠BPA,$
$∠DPC=∠BPC$
$∴點(diǎn)P 是四邊形ABCD的半等角點(diǎn),$
$即線段P_{1}P_{2}上任一點(diǎn)都是四邊形ABCD$
$的半等角點(diǎn)$