解?$:(1)$?若點(diǎn)?$Q{速度} $?為?$1\ \mathrm {cm}/s, $?點(diǎn)?$P{速度} $?為?$2\ \mathrm {cm}/s, $?
兩點(diǎn)同時運(yùn)動,當(dāng)點(diǎn)?$P$?到達(dá)終點(diǎn)?$A$?時,點(diǎn)?$P$?用了?$\frac {4}{2}=2s,$?
此時點(diǎn)?$Q{運(yùn)動了}2×1=2\ \mathrm {cm},$?
∴不可能點(diǎn)?$Q$?先到達(dá)終點(diǎn),
∴運(yùn)動時間?$t$?最大為?$2s,$?
∴運(yùn)動時間?$t(\mathrm {s})$?的取值范圍是:?$0\leqslant t\leqslant 2.$?
?$(2)$?點(diǎn)?$Q{速度} $?為?$1\ \mathrm {cm}/s, $?點(diǎn)?$P{速度} $?為?$2\ \mathrm {cm}/s, $?
則?$AQ=1×t=t(\ \mathrm {cm}),$??$ BP=2×t=2t(\ \mathrm {cm})$?
?$∴AP=AB-BP=(4-2t)\ \mathrm {cm},$?
?$∵{S}_{\triangle APQ}=\frac {1}{2}AP·AQ=1\ \mathrm {cm^2},$?
?$∴\frac {1}{2}(4-2t)t=1,$?
則?$(2-t)t=1, $?
去括號,得?$2t-{t}^2=1,$?
整理得?${t}^2-2t 1=0,$?
即?${(t-1)}^2=0,$?
解得:?$t=1s,$?
此時,點(diǎn)?$P$?運(yùn)動了?$2×1=2\ \mathrm {cm},$?位于?$AB$?的中點(diǎn).