證明:?$(1)$?連接?$OD. $?
?$∵ OA=OD,$?
?$∴ ∠OAD=∠ODA.$?
?$∵ AD$?平分?$∠BAC,$?
?$∴ ∠OAD=∠BAD,$?
?$∴ ∠ODA=∠BAD,$?
?$∴ OD//AB,$?
?$∴ ∠ODC=∠B=90°,$?
?$∴ OD⊥BC.$?
?$∵ OD$?是?$⊙O$?的半徑,
?$∴ BC$?是?$⊙O$?的切線.
?$(2)$?連接?$OF、$??$DE.$?
?$∵ ∠B=90°,$??$∠ADB=60°,$?
?$∴ ∠BAD=30°,$?
?$∴ AD=2BD=10. $?
?$∵ AE$?是?$⊙O$?的直徑,
?$∴ ∠ADE=90°. $?
?$∵ AD$?平分?$∠BAC,$?
?$∴ ∠DAE=∠BAD=30°,$?
?$∴ DE= \frac {1}{2}\ \mathrm {AE}. $?
∵ 在?$Rt∠ADE$?中,?$DE2+AD2=AE2,$?
?$∴ ( \frac {1}{2}\ \mathrm {AE})2+102=AE2,$?
解得?$AE =\frac {20\sqrt{3}}{3} ($?負(fù)值舍去),
?$∴ OA= \frac {1}{2}\ \mathrm {AE}= \frac {10\sqrt{3}}{3} . $?
?$∵ AD$?平分?$∠BAC,$?
?$∴ ∠BAC=2∠BAD=60°. $?
?$∵ OA=OF,$?
?$∴ △AOF$?是等邊三角形,
?$∴ ∠AOF=60°. $?
?$∵ OD//AB,$?
?$∴ S_{△ADF}=S_{△AOF},$?
?$∴ S_{涂色}=S_{扇形}OAF= \frac {60π×(\frac {10\sqrt{3}}{3})2}{360}=\frac {50π}{9}.$?