亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第115頁

第115頁

信息發(fā)布者:
??$\frac {5\sqrt{2}}{2}$??
??$\frac {\sqrt{2}}{2}$??
解:如圖,連接??$OA、$????$OB、$????$OF,$??設(shè)??$OB$??交??$AF$??于點??$G$??

??$ ∵AB⊥CD,$????$CD$??是直徑
??$ ∴AE=BE=\frac 1 2AB=3$??
設(shè)??$⊙O$??的半徑為??$r,$??則??$OE=r-1,$????$OA=r$??
在??$Rt△OAE$??中,由勾股定理,得${3}^2+{(r-1)}^2={r}^2$??
解得,??$r=5$??
??$ ∵{\widehat{AB}}={\widehat{BF}}$??
??$ ∴∠AOB=∠FOB$??
??$ ∵AO=FO$??
??$ ∴OB⊥AF,$????$AF=2AG$??
設(shè)??$OG=t$??
∴在??$Rt△AGO$??中,??${AG}^2={5}^2-{t}^2$??
在??$Rt△AGB$??中,??${AG}^2={6}^2-{(5-t)}^2$??
??$ ∴{5}^2-{t}^2={6}^2-{(5-t)}^2$??
解得,??$t=\frac 7 5$??
??$ ∴AG=\sqrt {{5}^2-{(\frac 7 5)}^2}=\frac {24}5$??
??$ ∴AF=2AG=\frac {48}5$??


證明:??$(1)∵AB$??為??$⊙O$??的直徑,
??$∴∠ACB=90°,$??
??$∴AC⊥BC,$??

又??$∵DC=CB,$??
??$∴AD=AB,$??
??$∴∠B=∠D.$??


??$(2)$??解:設(shè)??$BC=x,$??則??$AC=x-2,$??
在??$Rt△ABC$??中,??$AC^2+BC^2=AB^2,$??
??$∴(x-2)^2+x^2=4^2,$??
解得:??$x_1=1+\sqrt {7},$????$x_2=1-\sqrt {7}($??舍去),
??$∵∠B=∠E,$????$∠B=∠D,$??
??$∴∠D=∠E,$??
??$∴CD=CE,$??
??$∵CD=CB,$??
??$∴CE=CB=1+\sqrt {7}.$?
?