解:??$(1)∵$??原方程有兩個實數(shù)根,
??$∴[-(2k+1)]^2-4(k^2+2k)≥0,$??
??$∴4k^2+4k+1-4k^2-8k≥0$??
??$∴1-4k≥0,$??
??$∴k≤\frac {1}{4},$??
∴當??$k≤\frac {1}{4}$??時,原方程有兩個實數(shù)根.
??$(2)$??假設(shè)存在實數(shù)??$k$??使得??$x_1?x_2?x_1^2?x_2^2≥0$??成立.
??$∵x_1,$????$x_2$??是原方程的兩根,
??$∴x_1+x_2=2k+1,$????$x_1?x_2=k^2+2k.$??
由??$x_1?x_2?x_1^2?x_2^2≥0,$??
得??$3x_1?x_2?(x_1+x_2)^2≥0.$??
??$∴3(k^2+2k)-(2k+1)^2≥0,$??整理得:??$-(k-1)^2≥0,$??
∴只有當??$k=1$??時,上式才能成立.
又由??$(1)$??知??$k≤\frac {1}{4},$??
∴不存在實數(shù)??$k$??使得??$x_1?x_2?x_1^2?x_2^2≥0$??成立.