證明:?$(1)$?如圖,過點?$D$?作?$DM⊥AB$?于點?$M,$?
?$∵∠C=90 °,$??$DE⊥BC$?于點?$E,$??$DF⊥AC$?于點?$F,$?
?$∴∠C=∠DEC=∠DFC=90 °,$?
∴四邊形?$CFDE$?是矩形,
?$∵∠BAC,$??$∠ABC$?的平分線交于點?$D,$??$DE⊥BC$?于點?$E,$??$DF⊥AC$?于點?$F,$??$DM⊥AB$?于點?$M,$?
?$∴DE=DM,$??$DM=DF,$?
?$∴DF=DE,$?
∴矩形?$CFDE$?是正方形.
?$(2)$?在?$Rt△ABC$?中,?$AC=6,$??$BC=8,$?
根據(jù)勾股定理,得?$AB= \sqrt{AC2+BC2} =10.$?
設?$△ABC$?的內(nèi)切圓的半徑為?$r. $?
?$∵ S_{△ABC}= \frac {1}{2}×AC×BC= \frac {1}{2}×r×(AC+BC+AB),$?
?$∴ \frac {1}{2} ×6×8= \frac {1}{2}×r×(6+8+10),$?
解得?$r=2.$?
?$∴ △AIBC$?的內(nèi)切圓的周長為?$2π×2=4π$?