證明:?$(1)∵$?四邊形?$ABCD$?內(nèi)接于?$⊙O.$?
?$∴∠ABC+∠ADC=180°,$?
?$∵∠ABC=60°,$?
?$∴∠ADC=120°,$?
?$∵DB$?平分?$∠ADC,$?
?$∴∠ADB=∠CDB=60°,$?
?$∴∠ACB=∠ADB=60°,$??$∠BAC=∠CDB=60°,$?
?$∴∠ABC=∠BCA=∠BAC,$?
?$∴△ABC$?是等邊三角形.
?$(2)$?解:過(guò)點(diǎn)?$A$?作?$AE⊥CD$?于點(diǎn)?$E,$?
?$∴∠AED=90°,$?
∵四邊形?$ABCD$?為圓內(nèi)接四邊形,
?$∴∠ADC=180°-∠ABC=120°,$?

?$∴∠ADE=60°,$?
?$∴∠DAE=30°,$?
?$∴DE=\frac {1}{2}AD=1,$?
?$∴AE=\sqrt {AD^2-DE^2}=\sqrt {3},$?
?$∵CD=3,$?
?$∴CE=CD+DE=3+1=4,$?
在?$Rt△AEC$?中,?$∠AED=90°,$?
?$∴AC=\sqrt {AE^2+CE^2}=\sqrt {19},$?
?$∵△ABC$?是等邊三角形,
?$∴AB=BC=AC=\sqrt {19},$?
?$∴△ABC$?的周長(zhǎng)為?$3\sqrt {19}.$?