亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第49頁(yè)

第49頁(yè)

信息發(fā)布者:
30°
?$(-\sqrt{3},1)$?
40°
證明:?$(1)∵$?四邊形?$ABCD$?內(nèi)接于?$⊙O.$?
?$∴∠ABC+∠ADC=180°,$?
?$∵∠ABC=60°,$?
?$∴∠ADC=120°,$?
?$∵DB$?平分?$∠ADC,$?
?$∴∠ADB=∠CDB=60°,$?
?$∴∠ACB=∠ADB=60°,$??$∠BAC=∠CDB=60°,$?
?$∴∠ABC=∠BCA=∠BAC,$?
?$∴△ABC$?是等邊三角形.
?$(2)$?解:過(guò)點(diǎn)?$A$?作?$AE⊥CD$?于點(diǎn)?$E,$?
?$∴∠AED=90°,$?
∵四邊形?$ABCD$?為圓內(nèi)接四邊形,
?$∴∠ADC=180°-∠ABC=120°,$?

?$∴∠ADE=60°,$?
?$∴∠DAE=30°,$?
?$∴DE=\frac {1}{2}AD=1,$?
?$∴AE=\sqrt {AD^2-DE^2}=\sqrt {3},$?
?$∵CD=3,$?
?$∴CE=CD+DE=3+1=4,$?
在?$Rt△AEC$?中,?$∠AED=90°,$?
?$∴AC=\sqrt {AE^2+CE^2}=\sqrt {19},$?
?$∵△ABC$?是等邊三角形,
?$∴AB=BC=AC=\sqrt {19},$?
?$∴△ABC$?的周長(zhǎng)為?$3\sqrt {19}.$?

證明:?$(1)∵∠BAC=∠ADB,$??$∠BAC=∠CDB,$?
?$∴∠ADB=∠CDB,$?
?$∴BD$?平分?$∠ADC,$?
?$∵BD$?平分?$∠ABC,$?
?$∴∠ABD=∠CBD,$?
∵四邊形?$ABCD$?是圓內(nèi)接四邊形,
?$∴∠ABC+∠ADC=180°,$?
?$∴∠ABD+∠CBD+∠ADB+∠CDB=180°,$?
?$∴2(∠ABD+∠ADB)=180°,$?
?$∴∠ABD+∠ADB=90°,$?
?$∴∠BAD=180°-90°=90°.$?
?$(2)$?解:?$∵∠BAE+∠DAE=90°,$??$∠BAE=∠ADE,$?
?$∴∠ADE+∠DAE=90°,$?
?$∴∠AED=90°,$?
?$∵∠BAD=90°,$?
?$∴BD$?是圓的直徑,
?$∴BD$?垂直平分?$AC,$?
?$∴AD=CD,$?
?$∵AC=AD,$?
?$∴△ACD$?是等邊三角形,
?$∴∠ADC=60°$?
?$∵BD⊥AC,$?
?$∴∠BDC=\frac {1}{2}∠ADC=30°,$?
?$∵CF∥AD,$?
?$∴∠F+∠BAD=90°,$?
?$∴∠F=90°,$?
∵四邊形?$ABCD$?是圓內(nèi)接四邊形,
?$∴∠ADC+∠ABC=180°,$?
?$∵∠FBC+∠ABC=180°,$?
?$∴∠FBC=∠ADC=60°,$?
?$∴BC=2BF=4,$?
?$∵∠BCD=90°,$??$∠BDC=30°,$?
?$∴BC=\frac {1}{2}BD,$?
?$∵BD$?是圓的直徑,
∴圓的半徑長(zhǎng)是?$4.$
?