解:?$(1)$?如圖,設?$AC、$??$BD$?交于點?$E. $?
?$∵ AC⊥BD,$?
?$∴ ∠AED=90°$?
?$∵ BC//AD,$?
?$∴ ∠DBC,$??$=∠ADB. $?
?$∵ \widehat{CD}=\widehat{CD},$?
?$∴ ∠DBC=∠DAC,$?
?$∴ ∠ADB=∠DAC,$?
∴ 在?$Rt△AED$?中,?$∠ADB=∠DAC=45°. $?
?$∵ OA=OD,$?
?$∴ ∠OAD=∠ODA.$?
∵ 在?$△OAD$?中,?$∠AOD=120°,$?
?$∴ ∠OAD=30°,$?
?$∴ ∠CAO=∠DAC-∠OAD=15°$?
?$ (2)$?如圖,連接?$OB、$??$OC,$?過點?$O$?作?$OH⊥AD,$?垂足為?$H $?
?$∵ OA=OD,$??$OH⊥AD,$?
?$∴ AH=\frac {1}{2}\ \mathrm {AD}= \frac {\sqrt{3}}{2} $?
∵ 在?$Rt△OHA$?中,?$∠OAH=30°,$?
?$∴ OH=\frac {1}{2}\ \mathrm {OA}.$?
在?$Rt△OHA$?中,由勾股定理,得?$OH2+AH2=OA2,$?
?$∴ ( \frac {1}{2}OA)2+( \frac {\sqrt{3}}{2})2=OA2,$?
解得?$OA=1($?負值舍去) .
?$∵\widehat{CD}=\widehat{CD},$?
?$∴ ∠COD=2∠DAC=90。$?°
同理,得?$∠AOB=90°. $?
?$∵ ∠AOD=120°,$?
?$ ∴ ∠BOC=360°-90°-90°-120°=60°.$?
?$∵ OB=OC,$?
?$∴ △OBC$?是等邊三角形,
?$ ∴ BC=OB. $?
?$∵ OB=OA=1,$?
?$∴ BC=1$
?