解:如圖.設(shè)?$BE=t. $?
?$∵ EF=10,$?
?$∴ OE=OG=OH=5.$?
?$∵ ∠GOH=90°,$?
?$ ∴ ∠AOG+∠BOH=90°$?
∵ 在矩形?$ABCD$?中?$,∠DAB=∠ABC=90°, $?
?$∴ ∠AGO+∠AOG=90°,$?
?$∴ ∠AGO = ∠BOH. $?
在?$ △GAO $?和?$ △OBH $?中,
?$\begin{cases}{∠GAO=∠OBH=90°,}\\{∠AGO=∠BOH, }\\{OG=HO,}\end{cases}$?
?$∴ △GAO≌△OBH, $?
?$∴ GA=OB=BE-OE=t-5. $?
?$∵ AB=7,$?
?$∴ AE=BE-AB=t-7, $?
?$∴ AO=OE-AE=5-(t-7)=12-t.$?
在?$Rt△GAO$?中,由勾股定理,得?$AG2+AO2=OG2, $?
?$∴ (t-5)2+(12-t)2=52,$?
即?$t2-17t+72=0,$?
解得?$t_{1}=8,t_{2}=9,$?
?$∴ BE$?的長為?$8$?或?$9$
?