證明:連接?$AC,$?交?$BD$?于點?$O,$?連接?$OE、$??$OF. $?
∵ 四邊形?$ABCD$?是平行四邊形,
?$∴ OA=OC= \frac {1}{2}AC,$?
即?$O$?是?$AC$?的中點
?$∵ AE⊥BC,AF⊥CD, $?
∴ 在?$Rt△AEC$?和?$Rt△AFC$?中,
?$OE= \frac {1}{2}AC,OF= \frac {1}{2}AC, $?
?$∴ OA=OC=OE=OF, $?
?$∴ A、$??$E、$??$C、$??$F$?四點共圓