亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第19頁

第19頁

信息發(fā)布者:
解?$:\frac {1}{2}x2+x=\frac {3}{4}-\frac {1}{2}x$?
?$\frac {1}{2}x2+\frac {3}{2}x=\frac {3}{4}$?
?$x2+3x=\frac {3}{2}$?
?$(x+\frac {3}{2})2=\frac {15}{4}$?
?$x+\frac {3}{2}=±\frac {\sqrt{15}}{2}$?
?$x_1=\frac {-3+\sqrt{15}}{2},x_2=\frac {-3-\sqrt{15}}{2}$?
解?$:(10x-2)(x+2)-3(x+2)=0$?
?$(10x-2-3)(x+2)=0$?
?$(10x-5)(x+2)=0$?
?$10x-5=0$?或?$x+2=0$?
?$x_1=\frac {1}{2},x_2=-2$?
解?$:(4x-2)2=(3x+3)2$?
?$4x-2=3x+3$?或?$4x-2=-3x-3$?
?$∴x_1=5,x_2=-\frac {1}{7}$?
解?$:(2t-10-1)2=0$?
?$2t-11=0$?
?$t_1=t_2=\frac {11}{2}$?
解:由題意可得?$:\begin{cases}{m≠0}\\{[-(3m-1)]2-4m(2m-1)=1}\end{cases}$?
解得?$m_1=0($?舍去?$),m_2=2$?
?$∴m=2$?
∴原方程為?$2x2-5x+3=0$?
解得?$x_1=\frac {3}{2},x_2=1$?
解:?$(1)$?因為?$△=b^2-4ac=[-(2k+3)]^2-4×1×(k^2+3k+2)=1>0,$?
所以方程總有兩個不相等的實數(shù)根.
?$x^2-(2k+3)x+k^2+3k+2=0$?的解為?$x=\frac {2k+3±1}{2},$?
?$∴x_1=k+2,$??$x_2=k+1,$?
設(shè)?$AB=k+2,$??$AC=k+1,$?
當(dāng)?$AB^2+AC^2=BC^2,$?即?$(k+2)^2+(k+1)^2=5^2,$?
解得:?$k_1=-5,$??$k_2=2,$?
由于?$AB=k+2>0,$??$AC=k+1>0,$?
所以?$k=2;$?
當(dāng)?$AB^2+BC^2=AC^2,$?即?$(k+2)^2+5^2=(k+1)^2,$?
解得:?$k=-14,$?
由于?$AB=k+2>0,$??$AC=k+1>0,$?
所以?$k=-14$?舍去;
當(dāng)?$AC^2+BC^2=AB^2,$?即?$(k+1)^2+5^2=(k+2)^2,$?
解得:?$k=11,$?
由于?$AB=k+2=13,$??$AC=12,$?
所以?$k=11,$?
?$∴k$?為?$2$?或?$11$?時,?$△ABC$?是直角三角形.
?$(2)$?若?$AB=BC=5$?時,?$5$?是方程?$x^2-(2k+3)x+k^2+3k+2=0$?的實數(shù)根,
把?$x=5$?代入原方程,得?$k=3$?或?$k=4.$?
由?$(1)$?知,無論?$k$?取何值,?$△>0,$?
所以?$AB≠AC,$?故?$k$?只能取?$3$?或?$4.$?
根據(jù)一元二次方程根與系數(shù)的關(guān)系可得:?$AB+AC=2k+3,$?
當(dāng)?$k=3$?時,?$AB+AC=9,$?
則周長是?$9+5=14;$?
當(dāng)?$k=4$?時,?$AB+AC=8+3=11.$?
則周長是?$11+5=16.$?
綜上所述,當(dāng)?$k=3$?或?$k=4$?時,?$△ABC$?是等腰三角形,?$△ABC$?的周長分別是?$14,$??$16.$
?