解:?$(1)$?因為?$△=b^2-4ac=[-(2k+3)]^2-4×1×(k^2+3k+2)=1>0,$?
所以方程總有兩個不相等的實數(shù)根.
?$x^2-(2k+3)x+k^2+3k+2=0$?的解為?$x=\frac {2k+3±1}{2},$?
?$∴x_1=k+2,$??$x_2=k+1,$?
設(shè)?$AB=k+2,$??$AC=k+1,$?
當(dāng)?$AB^2+AC^2=BC^2,$?即?$(k+2)^2+(k+1)^2=5^2,$?
解得:?$k_1=-5,$??$k_2=2,$?
由于?$AB=k+2>0,$??$AC=k+1>0,$?
所以?$k=2;$?
當(dāng)?$AB^2+BC^2=AC^2,$?即?$(k+2)^2+5^2=(k+1)^2,$?
解得:?$k=-14,$?
由于?$AB=k+2>0,$??$AC=k+1>0,$?
所以?$k=-14$?舍去;
當(dāng)?$AC^2+BC^2=AB^2,$?即?$(k+1)^2+5^2=(k+2)^2,$?
解得:?$k=11,$?
由于?$AB=k+2=13,$??$AC=12,$?
所以?$k=11,$?
?$∴k$?為?$2$?或?$11$?時,?$△ABC$?是直角三角形.
?$(2)$?若?$AB=BC=5$?時,?$5$?是方程?$x^2-(2k+3)x+k^2+3k+2=0$?的實數(shù)根,
把?$x=5$?代入原方程,得?$k=3$?或?$k=4.$?
由?$(1)$?知,無論?$k$?取何值,?$△>0,$?
所以?$AB≠AC,$?故?$k$?只能取?$3$?或?$4.$?
根據(jù)一元二次方程根與系數(shù)的關(guān)系可得:?$AB+AC=2k+3,$?
當(dāng)?$k=3$?時,?$AB+AC=9,$?
則周長是?$9+5=14;$?
當(dāng)?$k=4$?時,?$AB+AC=8+3=11.$?
則周長是?$11+5=16.$?
綜上所述,當(dāng)?$k=3$?或?$k=4$?時,?$△ABC$?是等腰三角形,?$△ABC$?的周長分別是?$14,$??$16.$
?