亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第13頁

第13頁

信息發(fā)布者:
??$6$??或??$-4$??
解??$:a=1,b=2\sqrt{2},c=-6$??
??$b2-4ac=(2\sqrt{2})2-4×1×(-6)=32$??
??$y=\frac {-b±\sqrt{b2-4ac}}{2a}$??
??$=\frac {-2\sqrt{2}±\sqrt{32}}{2×1}$??
??$=\frac {-2\sqrt{2}±4\sqrt{2}}{2}$??
??$y_1=-3\sqrt{2},y_2=\sqrt{2}$??
解??$:2x2-2x+x-1=72-8x-1$??
??$2x2+7x-72=0$??
??$a=2,b=7,c=-72$??
??$b2-4ac=72-4×2×(-72)=625$??
??$x=\frac {-b±\sqrt{b2-4ac}}{2a}$??
??$=\frac {-7±\sqrt{625}}{2×2}$??
??$=\frac {-7±25}{4}$??
??$x_1=\frac {9}{2},x_2=-8$?
?
解??$:x2+2x+1-2(x2-2x+1)=7$??
??$x2+2x+1-2x2+4x-2=7$??
??$x2-6x+8=0$??
??$b2-4ac=(-6)2-4×1×8=4$??
??$x=\frac {-b±\sqrt{b2-4ac}}{2a}$??
??$=\frac {-(-6)±\sqrt{4}}{2×1}$??
??$=\frac {6±2}{2}$??
??$x_1=4,x_2=2$?
?
解??$:1-t2=4t2-2t$??
??$5t2-2t-1=0$??
??$b2-4ac=(-2)2-4×5×(-1)=24$??
??$t=\frac {-b±\sqrt{b2-4ac}}{2a}$??
??$=\frac {-(-2)±\sqrt{24}}{2×5}$??
??$=\frac {2±2\sqrt{6}}{10}$??
??t$_1=\frac {1+\sqrt{6}}{5},t_2=\frac {1-\sqrt{6}}{5}$??
解:根據(jù)題意, 得??$ (3\ \mathrm {m^2}+4\ \mathrm {m}-3)+(-\ \mathrm {m^2}+m-30)=0 , $??
即??$ 2\ \mathrm {m^2}+5\ \mathrm {m}-33=0 , $??解得??$ m_1=3, m_2=-\frac {11}{2} . $??
??$ ∴m $??的值為??$ 3 $??或??$ -\frac {11}{2} $??
解:一元二次方程??${x}^2-11x+30=0$??的兩個根分別為??${x}_1=5,$????${x}_2=6.$??

當?shù)妊切??$ABC$??的底邊長為??$5、$??腰長為??$6,$??
即??$BC=5,$????$AB=AC=6,$??過點??$A$??作??$AD⊥BC,$??如圖
??$ ∵AB=AC,$????$AD⊥BC$??
??$ ∴D$??為??$BC$??中點,??$BD=CD=\frac 1 2BC=\frac 5 2$??
在??$Rt△ABD$??中,由勾股定理,可得??$AD=\sqrt {{AB}^2-{BD}^2}=\sqrt {{6}^2-{(\frac 5 2)}^2}=\frac {\sqrt {119}}2$??
??$ ∴△ABC$??的面積為??$5×\frac {\sqrt {119}}2×\frac 1 2=\frac 5 4\sqrt {119};$??
當?shù)妊切??$ABC$??的底邊長為??$6、$??腰長為??$5,$??
即??$BC=6,$????$AB=AC=5,$??過點??$A$??作??$AD⊥BC$??
??$∵AB=AC,$????$AD⊥BC$??
??$ ∴D$??為??$BC$??中點,??$BD=CD=\frac 1 2BC=3$??
在??$Rt△ABD$??中,由勾股定理,可得??$AD=\sqrt {{AB}^2-{BD}^2}=\sqrt {{5}^2-{3}^2}=4$??
??$ ∴△ABC$??的面積為??$6×4×\frac 1 2=12$??
綜上所述,??$△ABC$??的面積為??$\frac 5 4\sqrt {119}$??或??$12$?
?