證明:?$∵-2 {\ \mathrm {m^2}}+8m-12=-2{(m-2)}^2-4,$?且對(duì)于
任意實(shí)數(shù)?$m,$?總有?${(m-2)}^2\geqslant 0$?
?$ ∴-2{(m-2)}^2\leqslant 0$?
?$ ∴-2{(m-2)}^2-4\leqslant -4$?
∴對(duì)于任意實(shí)數(shù)?$m,$?代數(shù)式?$-2 {\ \mathrm {m^2}}+8m-12$?的值總不等于?$0$?
∴對(duì)于任意實(shí)數(shù)?$m,$?關(guān)于?$x$?的方程?$(-2 {\ \mathrm {m^2}}+8m-12){x}^2-3x+1$?都是一元二次方程