亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

第7頁

信息發(fā)布者:
??$n≤\frac {4}{3}$??
4
解??$:x+\frac {1}{9}=0$??
??$x=-\frac {1}{9}$??
解??$:\frac {1}{2}(x-5)2=16$??
??$(x-5)2=32$??
??$x-5=±4\sqrt{2}$??
??$x_1=5+4\sqrt{2},x_2=5-4\sqrt{2}$??
解??$:y2-0.09-0.16=0$??
??$y2=0.25$??
??$y_1=0.5,y_2=-0.5$??
解??$:2(2m-3)=±3(m-1)$??
??$2(2m-3)=3(m-1)$??或??$2(2m-3)=-3(m-1)$??
??$4m-6=3m-3$??或??$4m-6=3-3m$??
??$m_1=3$??或??$m_2=\frac {9}{7}$??
解:令??$y={a}^2+^2,$??則原方程可化簡為??${(y-1)}^2=17,$??
直接開平方,得??$y-1=±\sqrt {17}$??
解得,??${y}_1=-\sqrt {17}+1,$????${y}_2=\sqrt {17}+1$??
??$ ∵y={a}^2+^2\geqslant 0$??
??$ ∴y=\sqrt {17}+1,$??即??${a}^2+^2=\sqrt {17}+1$??
解:當(dāng)??$ 1 \leqslant x<2 $??時??$, \frac {1}{2} x^2=1 , $??即??$ x^2=2 , $??
解得??$ x_1=\sqrt{2}, x_2= -\sqrt{2} ($??不合題意, 舍去);
當(dāng)??$ 0 \leqslant x<1 $??時??$, \frac {1}{2} x^2=0 , $??即??$ x^2=0 , $??解得??$ x_1=x_2=0 ; $??
當(dāng)??$ -1 \leqslant x<0 $??時??$, \frac {1}{2} x^2=-1 , $??方程沒有實數(shù)根;
當(dāng)??$ -2 \leqslant x<-1 $??時??$, \frac {1}{2} x^2=-2 , $??方程沒有實數(shù)根.
綜上所述, 在??$ -2 \leqslant x<2 $??的范圍內(nèi)滿足??$ [x]=\frac {1}{2} x^2 $??的??$ x $??的值為??$ \sqrt{2} $??或??$ 0$??