$解:由前三個(gè)式子可知第4個(gè)式子為$
$\ \frac{1}{4}×(\frac{1}{5}-\frac{1}{6})$
$\ =\frac{1}{5} \sqrt{\frac {5}{24}} ,$
$驗(yàn)證: \sqrt { \frac{1}{4}×(\frac {1}{5}-{\frac {1}{6})}}$
$= \sqrt{\frac {1}{4×5×6}}$
$=\sqrt{\frac {5}{4×5^{2} ×6}}\ $
$=\frac{1}{5} \sqrt{\frac{5}{24}};$
$第 5 個(gè)式子為$
$\ \sqrt{\frac{1}{5}×(\frac{1}{6}-\frac {1}{7})}\ $
$=\frac{1}{6}\sqrt {\frac {6}{35}} ,$
$驗(yàn)證:\sqrt {\frac{1}{5}×( \frac{1}{6}-\frac {1}{7})}$
$= \sqrt{\frac {1}{5×6×7}}\ $
$=\sqrt{\frac {6}{5×62×7}}$
$=\frac{1}{6} \sqrt{\frac {6}{35}}.$