$解:(1)① \sqrt{4-2\sqrt {3} }$
$= \sqrt{3-2\sqrt {3} +1}$
$= \sqrt{(\sqrt {3} )2-2×\sqrt {3} ×1+12}$
$= \sqrt{(\sqrt {3} -1)2}$
$= \sqrt {3} -1.\ $
$②\sqrt{7-4\sqrt {3} }\ $
$= \sqrt{4-4\sqrt {3} +3}\ $
$= \sqrt{22-2×2×\sqrt {3} +(\sqrt {3} )2}\ $
$=\sqrt{(2-\sqrt{3})^{2} }$
$=2 -\sqrt{3}.$
$(2)∵a+6\sqrt {5}\ $
$=(m+\sqrt{5}n)2$
$=m2+5n2+2\sqrt {5} mn.$
$∴a=m2+5n2且 2\sqrt {5} mn=6\sqrt {5} ,$
$∴a=m2+5n2且mn=3.$
$∵a、m、n為正整數(shù),$
$∴當m=1,n=3時,a=46;$
$當m=3,n=1時,a=14.$
$∴a的值為14或46.$