亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第86頁

第86頁

信息發(fā)布者:
C
3
1
$\frac{8}{1-a^{8} } $
$\frac{3n}{n+1} $
$\frac{a}$
$解:設(shè)往(1)中的糖水中加入c(c>0)克糖,$
$則此時(shí)糖水的甜度為 \frac{b+c}{a+c}.$
$∵\(yùn)frac{b+c}{a+c}-\frac{a}$
$=\frac{ab+ac}{a(a+c)}-\frac {ab+bc}{a(a+c)}$
$=\frac{c(a-b)}{a(a+c)}.$
$∵a>b>0,c>0,∴a-b>0,$
$c(a-b)>0,a(a+c)>0,$
$∴\frac{c(a-b)}{a(a+c)}>0,∴\frac{b+c}{a+c}> \frac {a},$
$∴向(1)中的糖水中再加入適量的糖,充分$
$攪勻后,糖水更甜了.$
$\frac{1}{2} $
-1
②③
(更多請點(diǎn)擊查看作業(yè)精靈詳解)
$解:∵正實(shí)數(shù)a、b互為倒數(shù),$
$∴ab=1,b=\frac{1}{a},$
$∴\dfrac{3a2}{a2+b}-\dfrac{a-2b2}{a+b2}$
$= \dfrac{3a2}{a2+\dfrac {1}{a}} -\dfrac{a-\dfrac {2}{a2}}{a+\dfrac {1}{a2}}= \dfrac{3a^{3} }{a^{3} +1}-\dfrac{a^{3} -2}{a^{3} +1}$
$=\dfrac{3a^{3} -a^{3} +2}{a^{3} +1}$
$=\dfrac{2(a^{3} +1)}{a^{3} +1}$
$=2,$
$∴\dfrac{3a2}{a2+b}與\dfrac{a-2b2}{a+b2}屬于“友好分式組”.$
$解:|\dfrac{3a2}{a2-4b2} -\dfrac {a}{a+2b}|=| \dfrac{3a2}{(a+2b)(a-2b)}-\dfrac {a(a-2b)}{(a+2b)(a-2b)}|\ $
$=|\dfrac{3a2-a2+2ab)}{(a+2b)(a-2b)}|$
$=|\dfrac{2a2+2ab}{a2-4b2} |.$
$∵a、b均為非零實(shí)數(shù),且分式\dfrac{3a2}{a2-4b2}與\dfrac{a}{a+2b}屬于“友好分式組”,$
$∴ |\dfrac{2a2+2ab}{a2-4b2}|=2,$
$∴2a2+2ab=2(a2-4b2)$
$或2a2+2ab=-2(a2-4b2).$
$∴a=-4b或ab=4b2-2a2.\ $
$把a(bǔ)=-4b代入\dfrac {a2-2b2}{ab}$
$得 \dfrac{16b2-2b2}{-4b2}=-\dfrac{7}{2};\ $
$把a(bǔ)b=4b2-2a2代入\dfrac {a2-2b2}{ab}$
$得 \dfrac{a2-2b2}{4b2-2a2}=\dfrac{a2-2b2}{-2(a2-2b2)} =\dfrac{1}{2},\ $
$∴\dfrac{a2-2b2}{ab}的值為-\dfrac{7}{2}或-\dfrac{1}{2}.$