$解:|\dfrac{3a2}{a2-4b2} -\dfrac {a}{a+2b}|=| \dfrac{3a2}{(a+2b)(a-2b)}-\dfrac {a(a-2b)}{(a+2b)(a-2b)}|\ $
$=|\dfrac{3a2-a2+2ab)}{(a+2b)(a-2b)}|$
$=|\dfrac{2a2+2ab}{a2-4b2} |.$
$∵a、b均為非零實(shí)數(shù),且分式\dfrac{3a2}{a2-4b2}與\dfrac{a}{a+2b}屬于“友好分式組”,$
$∴ |\dfrac{2a2+2ab}{a2-4b2}|=2,$
$∴2a2+2ab=2(a2-4b2)$
$或2a2+2ab=-2(a2-4b2).$
$∴a=-4b或ab=4b2-2a2.\ $
$把a(bǔ)=-4b代入\dfrac {a2-2b2}{ab}$
$得 \dfrac{16b2-2b2}{-4b2}=-\dfrac{7}{2};\ $
$把a(bǔ)b=4b2-2a2代入\dfrac {a2-2b2}{ab}$
$得 \dfrac{a2-2b2}{4b2-2a2}=\dfrac{a2-2b2}{-2(a2-2b2)} =\dfrac{1}{2},\ $
$∴\dfrac{a2-2b2}{ab}的值為-\dfrac{7}{2}或-\dfrac{1}{2}.$