亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第134頁

第134頁

信息發(fā)布者:
?$9\sqrt{2}$?
解:原式?$=3\sqrt{6}+2\sqrt{6}-9×\frac {\sqrt{6}}{18}$?
?$=3\sqrt{6}+2\sqrt{6}-\frac {\sqrt{6}}{2}$?
?$=\frac {9\sqrt{6}}{2}$

?
解:原式?$=10x2\sqrt{xy}×(5÷15)×\sqrt{\frac {y}{x}÷\frac {x}{y}}$?
?$=10x2\sqrt{xy}×\frac {1}{3}×\frac {y}{x}$?
?$=\frac {10}{3}xy\sqrt{xy}$?
解:原式?$=3\sqrt{2}+3\sqrt{5}-2\sqrt{5}-5\sqrt{2}$?
?$=\sqrt{5}-2\sqrt{2}$?
解:原式?$=(4+4\sqrt{10}+10)(14-4\sqrt{10})$?
?$=(14+4\sqrt{10})×(14-4\sqrt{10})$?
?$=142-(4\sqrt{10})2$?
?$=196-160$?
?$=36$?
解:原式?$=\frac {1+x+1-x}{x+1}×\frac {(x+1)2}{2(x-1)}$?
?$=\frac {2}{x+1}×\frac {(x+1)2}{2(x-1)}$?
?$=\frac {x+1}{x-1}$?
將?$x=\sqrt{2}+1$?代入原式
原式?$=\frac {\sqrt{2}+1+1}{\sqrt{2}+1-1}=1+\sqrt{2}$

?
解:三角形的面積?$=\frac {1}{2}×(3-\sqrt{2})×(3+\sqrt{2})=\frac {7}{2}{cm}^2;$?
三角形的斜邊長?$=\sqrt{{(3-\sqrt{2})}^2+{(3+\sqrt{2})}^2}=\sqrt{22},$?
∴三角形的周長?$=(3-\sqrt{2})+(3+\sqrt{2})+\sqrt{22}=(6+\sqrt{22})\ \mathrm {cm}.$?

解:?$(1)$?如圖①所示:
?$AC+CE=\sqrt{{x}^2+25}+\sqrt{{x}^2-16x+65},$?
當(dāng)?$A、$??$C、$??$E$?在同一直線上,?$AC+CE$?最?。?/div>
?$(2)$?作點(diǎn)?$N$?關(guān)于?$x$?軸的對稱點(diǎn)?$N',$?連接?$MN'$?交?$x$?軸于點(diǎn)?$P,$?此時(shí)?$PM+PN$?的值最小,等于?$MN',$?
過點(diǎn)?$M$?作?$y$?軸的垂線交射線?$N'N$?于點(diǎn)?$A,$?如圖②所示.
?$∵N(3,$??$2),$?
?$∴N'(3,$??$-2).$?
設(shè)直線?$MN'$?得解析式為?$y=kx+b,$?
則?$\{\begin{array}{l}{b=4}\\{3k+b=-2}\end{array},$?
解得?$\{\begin{array}{l}{k=-2}\\{b=4}\end{array}.$?
?$∴y=-2x+4.$?
當(dāng)?$-2x+4=0$?時(shí),?$x=2,$?
?$∴P(2,$??$0).$?
在?$Rt△AMN'$?中,?$AM=3,$??$AN'=6,$?
?$∴MN'=\sqrt{A{M}^2+AN{'}^2}=\sqrt{{3}^2+{6}^2}=3\sqrt{5}.$?
?$∴PM+PN$?最小值為?$3\sqrt{5}.$?