當(dāng)?$A、$??$C、$??$E$?在同一直線上,?$AC+CE$?最?。?/div>
?$(2)$?作點(diǎn)?$N$?關(guān)于?$x$?軸的對稱點(diǎn)?$N',$?連接?$MN'$?交?$x$?軸于點(diǎn)?$P,$?此時(shí)?$PM+PN$?的值最小,等于?$MN',$?
過點(diǎn)?$M$?作?$y$?軸的垂線交射線?$N'N$?于點(diǎn)?$A,$?如圖②所示.
?$∵N(3,$??$2),$?
?$∴N'(3,$??$-2).$?
設(shè)直線?$MN'$?得解析式為?$y=kx+b,$?
則?$\{\begin{array}{l}{b=4}\\{3k+b=-2}\end{array},$?
解得?$\{\begin{array}{l}{k=-2}\\{b=4}\end{array}.$?
?$∴y=-2x+4.$?
當(dāng)?$-2x+4=0$?時(shí),?$x=2,$?
?$∴P(2,$??$0).$?
在?$Rt△AMN'$?中,?$AM=3,$??$AN'=6,$?
?$∴MN'=\sqrt{A{M}^2+AN{'}^2}=\sqrt{{3}^2+{6}^2}=3\sqrt{5}.$?
?$∴PM+PN$?最小值為?$3\sqrt{5}.$?