解:?$(1)AC+CE=\sqrt {(8-x)^2+25}+\sqrt {x^2+1}$?
?$ (2)$?當(dāng)?$A、$??$C、$??$E$?三點(diǎn)共線時(shí),?$AC+CE$?的值最小
?$ (3)$?如圖所示,作?$BD=12,$?過點(diǎn)?$B$?作?$AB⊥BD,$?過點(diǎn)?$D$?作?$ED⊥BD$?
使得?$AB=2,$??$ED=3,$?連接?$AE$?交?$BD$?于點(diǎn)?$C,$?設(shè)?$BC=x$?
∴?$AE$?的長(zhǎng)即為?$\sqrt {x^2+4}+\sqrt {(12-x)^2+9}$?的最小值
過點(diǎn)?$A$?作?$AF//BD$?交?$ED$?的延長(zhǎng)線于點(diǎn)?$F,$?得矩形?$ABDF$?
則?$AB=DF=2,$??$AF=BD=12,$??$EF=ED+DF=3+2=5$?
∴?$AE=\sqrt {AF^2+EF^2}=\sqrt {12^2+5^2}=13$?
即?$\sqrt {x^2+4}+\sqrt {(12-x)^2+9}$?的最小值為?$13$?