解:???$ (1)$???若???$a$???有意義,則???$8-x≥0,$??????$x≤8$???
若???$b$???有意義,則???$3x+4≥0,$??????$x≥-\frac {4}{3}$???
若???$c$???有意義,則???$x+2≥0,$??????$x≥-2$???
當???$-\frac {4}{3}≤x≤8$???時,???$a、$??????$b、$??????$c$???都有意義
???$ (2)$???若???$a、$??????$b、$??????$c$???為直角三角形的三邊,則???$-\frac {4}{3}< x< 8$???
???$ ①a2+b2= c2$???時,???$(8-x)+ (3x+4)=x+2$???
???$ x=-10,$???不滿足???$-\frac {4}{3}<x<8$???
故此時不成立
???$ ②a2+c2= b2$???時,???$(8-x)+(x+2)= 3x+4$???
???$ x=2,$???滿足???$-\frac {4}{3}<x< 8$???
???$ ③c2+b2=a2$???時,???$(3x+4)+(x+2)=8-x$???
???$ x=\frac {2}{5},$???滿足???$-\frac {4}{3}<x<8$???
綜上所述:當???$x= 2$???或???$\frac {2}{5}$???時,???$a、$??????$b、$??????$c$???為直角三角形的三邊。