解:∵ 正方形?$OABC$?的邊長(zhǎng)為?$1$?
∴?$ OC=OA=AB=BC=1,$??$∠OCB=90°,$?
?$∠COB=45°,$??$OC//AB$?
在?$Rt△OBC$?中,∵?$ OC=BC=1$?
∴?$ OB={\sqrt {{OC}^2+{BC}^2}}={\sqrt {2}}$?
∵?$ OD=OC=1$?
∴?$ BD=\sqrt {2}-1,$?
?$∠OCD=∠ODC=\frac {180°-45°}2=67.5°$?
∴?$ ∠BDE=∠ODC=67.5°$?
∵?$ OC//AB$?
∴?$ ∠BED=∠OCD=67.5°$?
∴?$ ∠BED=∠BDE$?
∴?$ BD=BE=\sqrt {2}-1,$??$AE=1-(\sqrt {2}-1)=2-\sqrt {2}$?
∴?$ E(1,$??$2-\sqrt {2})$?